JOURNAL OF APPROXIMATION THEORY 60, 183-187 (1990)

The Distribution of the Zeros of Certain Orthogonal Polynomials

A. McD. Mercer

Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Communicated by V. Totik

Received May 2, 1988

If $\alpha_n \in R$, $\beta_n > 0$, $p_{-1} = 0$, and $p_0 = 1$, let $\{p_n\}_0^{\infty}$ be a sequence of monic polynomials satisfying

$$p_{n+1}(x) = (x - \alpha_n) p_n(x) - \beta_n p_{n-1}(x) \qquad (n = 0, 1, 2, ...).$$
(1)

According to a theorem of Favard [1], there will exist a distribution function w on $(-\infty, +\infty)$ such that

$$\int_{-\infty}^{+\infty} p_m(x) p_n(x) dw(x) = 0 \qquad (m \neq n).$$

The zeros of $p_n(x)$ are known to be real and distinct and to lie in the smallest closed interval containing the support of dw. We will enumerate them as

$$x_1^n < x_2^n < \cdots < x_n^n.$$

Now suppose that α_n and β_n are constant ($\alpha_n = \alpha$, $\beta_n = \beta > 0$, say) and that f is a continuous function. The constant-coefficient difference equation (1) is easily solved and the x_n^n found. It is then a simple matter to verify that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(x_i^n) = \int_{-\infty}^{+\infty} f(t) \, d\phi(t),$$

where

$$\phi(t) = \frac{1}{\pi} \int_{-\infty}^{t} \frac{\Phi(\alpha - 2\sqrt{\beta}, \alpha + 2\sqrt{\beta})}{[4\beta - (u - \alpha)^2]^{1/2}} du.$$
183

(2)

Here $\Phi(a, b)$ denotes the characteristic function of the interval (a, b). Note that the support of $d\phi$ is $[\alpha - 2\sqrt{\beta}, \alpha + 2\sqrt{\beta}]$ and that all of the x_i^n lie in this interval, so that the result could be stated equivalently using a function of the type

$$\psi_x(t) = 1 \ (t \le x) := 0 \ (t > x)$$

in place of the continuous f.

If, instead of supposing that $\alpha_n = \alpha$, $\beta_n = \beta > 0$ for all *n*, we relax this condition of constancy to $\alpha_n \to \alpha$, $\beta_n \to \beta > 0$ it turns out that the result (2) continues to hold. This result is not elementary and several proofs have been given [2–5].

In the present note it is our purpose to show that the condition of constancy of the sequences $\{\alpha_n\}_0^\infty$ and $\{\beta_n\}_0^\infty$ can be relaxed in yet another fashion when, once again the result (2) is obtained. We will need the following definition:

DEFINITION. A sequence $\{\alpha_n\}_0^\infty$ will be called *nearly constant* if a constant α exists such that

$$\#\{\alpha_k: 0 \leq k \leq n: \alpha_k \neq \alpha\} = o(n) \quad \text{as} \quad n \to \infty.$$

Our object, then, is to prove the following result:

THEOREM. If in (1) the sequences $\{\alpha_n\}_0^\infty$ and $\{\beta_n\}_0^\infty$ are nearly constant, these constants being α and $\beta > 0$, respectively, then (2) holds provided $f \in C(-\infty, +\infty)$ and the limits $\lim_{x \to +\infty} f(x)$ exist.

Proof of the Theorem. We will denote by $p_n(x)$ the polynomials arising from the nearly constant sequences $\{\alpha_n\}_0^\infty$ and $\{\beta_n\}_0^\infty$ and by $q_n(x)$ the polynomials corresponding to $\alpha_n = \alpha$, $\beta_n = \beta$ for all *n*. Also, we will work with the function $\psi_x(t)$ rather than with a continuous f(t). The general case will follow from this.

We introduce two infinite, tridiagonal, symmetric matrices A and B as follows:

in which $\gamma_k = \sqrt{\beta_k}$, $\gamma = \sqrt{\beta}$. The principal $n \times n$ section of A, for example, will be denoted by A_n . Then it is well known that

$$det(A_n - xI_n) = (-1)^n p_n(x)$$
$$det(B_n - xI_n) = (-1)^n q_n(x)$$

so that the zeros of $p_n(x)$ and $q_n(x)$ are, respectively, the eigenvalues of A_n and of B_n . We denote these by

$$a_1^n < a_2^n < \cdots < a_n^n$$

and

$$b_1^n < b_2^n < \cdots < b_n^n.$$

We see at once that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \psi_x(b_i^n) = \int_{-\infty}^{+\infty} \psi_x(t) \, d\phi(t) \qquad (= L(\psi_x), \text{ say}). \tag{3}$$

This is the elementary case of (2) mentioned at the outset of this note. Our object is to prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \psi_x(a_i^n) = L(\psi_x)$$

also. The sequence $\{\alpha_n\}_0^\infty$ is nearly constant $(=\alpha)$ and so we proceed down the main diagonal of the matrix A_n and delete any row and column which contains a diagonal element which is not equal to α . This process is repeated with the other two diagonals of A_n , deleting any row and column which contains an element on that diagonal which is not equal to γ . The $(n-k) \times (n-k)$ matrix which finally results will be called C_{n-k} and clearly k = o(n) as $n \to \infty$ in view of our definition of "nearly constant."

On examining the form of C_{n-k} it is found to consist of blocks of square matrices whose diagonal elements form the diagonal elements of C_{n-k} and each of these square matrices is a B_q $(1 \le q \le n-k)$. The eigenvalues of C_{n-k} will be written as

$$c_1^{n-k} \leqslant c_2^{n-k} \leqslant \cdots \leqslant c_{n-k}^{n-k}.$$

Since C_{n-k} was obtained by deleting k rows and corresponding columns of A_n it is classical [6, 7] that their eigenvalues are related as follows:

$$c_i^{n-k} \in [a_i^n, a_{i+k}^n]$$
 $(i=1, 2, ..., n-k).$

From this it follows that

(The number of eigenvalues of $A_n \leq x$)

- (The number of eigenvalues of $C_{n-k} \leq x$) = $J_k(x)$,

where

$$0 \leqslant J_k(x) \leqslant k. \tag{4}$$

This can be written as

$$\sum_{i=1}^{n} \psi_{x}(a_{i}^{n}) - \sum_{i=1}^{n-k} \psi_{x}(c_{i}^{n-k}) = J_{k}(x).$$
(5)

We now examine the eigenvalues c_i^{n-k} . In view of the form of C_{n-k} (made up of diagonal components B_q) the numbers c_i^{n-k} are the eigenvalues of B_q for various q. Indeed, if $m_{n,q}$ is the number of times the block B_q appears in C_{n-k} then

$$\sum_{i=1}^{n-k} \psi_x(c_i^{n-k}) = \sum_{q=1}^{n-k} m_{n,q} \sum_{i=1}^{q} \psi_x(b_i^a).$$
(6)

We also observe the results

$$\sum_{q=1}^{n-k} q m_{n,q} = n-k$$
 (7)

and

$$k \ge \left(\sum_{q=1}^{n-k} m_{n,q}\right) - 1 \ge 0$$

and from the latter it follows that

$$\frac{1}{n-k}\sum_{q=1}^{n-k}m_{n,q}\to 0 \qquad \text{as} \quad n\to\infty.$$
(8)

Now from (5) and (6) we get

$$\frac{1}{n}\sum_{i=1}^{n}\psi_{x}(a_{i}^{n})-\frac{n-k}{n}\left\{\frac{1}{n-k}\sum_{q=1}^{n-k}qm_{n,q}L_{q}(\psi_{x})\right\}=\frac{J_{k}(x)}{n},$$
(9)

where

$$L_q(\psi_x) = \frac{1}{q} \sum_{i=1}^q \psi_x(b_i^q).$$

186

By (4), $J_k = o(n)$ so it will suffice to show that the expression in brackets in (9) tends to $L(\psi_x)$ (see (3)) as $n \to \infty$. That is, using (7), we have to show that

$$\frac{1}{n-k}\sum_{q=1}^{n-k}qm_{n,q}[L_q(\psi_x)-L(\psi_x)]\to 0.$$

But this is a simple consequence of (7), (8), and the facts that

$$\begin{split} 0 &\leqslant L_q(\psi_x) \leqslant 1, \qquad 0 \leqslant L(\psi_x) \leqslant 1 \\ L_q(\psi_x) &\to L(\psi_x) \qquad \text{as} \quad q \to \infty. \end{split}$$

This completes the proof of the theorem.

Note. In the theorem above the hypothesis that the limits $\lim_{x \to \pm \infty} f(x)$ exist could be replaced by requiring the two sequences $\{\alpha_n\}$ and $\{\beta_n\}$ to be bounded. For in that case, all of the x_i^n will lie in some compact interval. The proof will be unchanged.

ACKNOWLEDGMENT

In conclusion, I thank one of the editors for pointing out an omission in the statement of the above theorem.

References

- 1. J. FAVARD, Sur les polynomes de Tchebicheff, C.R. Acad. Sci. Paris 200 (1935), 2035-2053.
- 2. P. G. NEVAI, "Orthogonal Polynomials," Mem. Amer. Math. Soc., Providence, RI, 1979.
- P. G. NEVAI, Distribution of zeros of orthogonal polynomials, Trans. Amer. Math. Soc. 249 (1979), 341-361.
- 4. A. MCD. MERCER, On the asymptotic eigenvalue distribution of certain Hermitian matrices, to appear J. Approx. Theory.
- W. VAN ASSCHE, Asymptotic properties of orthogonal polynomials from their recurrence formula, I. J. Approx. Theory 44 (1985), 258-276.
- 6. J. H. WILKINSON, "The Algebraic Eigenvalue Problem," Oxford Univ. Press, Oxford, 1965.
- 7. Y. IKEBE, T. INAGAKI, AND S. MIYAMOTO, The monotonicity theorem, Cauchy's interlace theorem and the Courant-Fischer theorem, *Amer. Math. Monthly* 94, No.4 (1987), 352-354.